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Background knowledge for building conversational agents

📌 Definition

Conversational Artificial Intelligence (Conversational AI) is a collective term 

referring to technologies for building conversational agents that are able to 

interact with humans through natural language.
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Terminology

⚠Warning

The term is defined and 

interpreted inconsistently in 

both academia and industry.

AI

Conversational AI 

Technologies

Human Agent



Background knowledge for building conversational agents
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Types of conversational agents

Text-

Based

Voice-

Based

Conversational 

Interfaces

Multi 

Modal

Expert Systems, 

Knowledge Bases,

Virtual Assistants, …

Types of Conversational Interfaces

▪ Conversational interfaces can be broadly 

categorized into three types:

▪ Text-based interfaces

▪ Voice-based interfaces

▪ Multi modal interfaces

Integration of Conversational Interfaces

▪ Many software agent systems incorporate 

conversational interfaces (conversational agents)

▪ Conversational interfaces are often embedded in 

smart devices



Background knowledge for building conversational agents

Conversational 
Agents

Interaction

Text-Based

Voice-Based

Knowledge 
Domain

Open Domain

Closed Domain

Goals

Task-Oriented

Non-Task-
Oriented

Design 
Approach

Rule-Based

Retrieval-Based

Generative-
Based
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Types of conversational agents by Hussain et al. (2019)

▪ Broader categorization of conversational agents 

based on several criteria, e.g., mode of interaction, 

knowledge domain, their usage and the design 

techniques

▪ Specifically with regard to goals, chatbots are 

classified into two main categories:

▪ Task-oriented

▪ Designed for a particular task

▪ Set up to have short conversations, usually 

within a closed domain

▪ Non-task oriented

▪ Can simulate a conversation with a person

▪ Seem to perform chitchat for entertainment 

purpose in open domains 



Background knowledge for building conversational agents

Modular pipeline architecture

Speech-To-Text

Natural 
Language 

Understanding

Dialogue 
Management

Natural 
Language 

Generation

Text-To-Speech
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Background knowledge for building conversational agents

Natural language understanding (NLU)

▪ Goal: to extract structured information from user messages, usually includes the user’s intent and 

any entities their message contains

▪ Rasa NLU has a pipeline architecture
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Modular pipeline architecture

https://rasa.com/blog/intents-entities-understanding-the-rasa-nlu-pipeline/



Background knowledge for building conversational agents

Natural language understanding (NLU)
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Modular pipeline architecture

→

NLU will take in a sentence such as 

"I am looking for a French restaurant in the center of town”

and return structured data like:

https://rasa.com/docs/rasa/generating-nlu-data



Background knowledge for building conversational agents

Dialogue management (DM)

Dialogue management is the function that 

controls the next action the assistant takes 

during a conversation. 

Based on the intents and entities extracted 

by Rasa NLU, as well as other context, like 

the conversation history, Rasa decides 

which text response should be sent back to 

the user or whether to execute custom 

code, like querying a database. 

Rasa assistant uses policies to decide 

which action to take at each step in a 

conversation. There are three different 

policies that the default config.yml file
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Modular pipeline architecture

https://rasa.com/blog/dialogue-policies-rasa-2/



Modular pipeline architecture

Modular pipeline architecture

Natural Language Generation (NLG)

N
L

G

RULE-BASED

RETRIEVAL-BASED

GENERATIVE
Response production as a 

language generation task

Retrieve the most similar 

response from corpus by 

scoring similarity 

Use defined rules to answer 

questions
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Modular pipelines versus sequence-to-sequence architectures
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Comparison of pipeline-based and sequence-to-sequence architectures
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Excursus: Sequence-to-sequence architectures (Transformers)
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Figure taken from: The Illustrated Transformer (Alammar, 2018) Figure taken from: Attention Is All You Need (Vaswani et al., 2017)

Neural Language Model

http://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762


Excursus: Sequence-to-sequence architectures (decoder-only)
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Figures taken from: Understanding the Open Pre-Trained Transformers (OPT) Library (Wolfe, 2022)

https://towardsdatascience.com/understanding-the-open-pre-trained-transformers-opt-library-193a29c14a15


Excursus: Alignment of large language models with human intentions: 

Reinforcement Learning from Human Feedback 

© sebis230425 Schneider Practical Course NLP-based Software Engineering 15Figure taken from: Aligning language models to follow instructions (OpenAI, 2022)

https://openai.com/research/instruction-following


Excursus: Usage of large language models for dialogue systems
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⚠Warning

Auto-regressive large language models (LLMs) show 

exceptional performance in text generation, but should be 

used with caution in the context of dialogue systems due 

to the following shortcomings:

▪ Weak representational power

▪ Factual errors and hallucinations

▪ Logical errors and lack of commonsense

▪ Inconsistency and not controllable

▪ Bias and toxicity

→ Large language models have no knowledge of the 

underlying reality and do not apply human-level reasoning

✍ Recently released LLMs

▪ GPT-3.5, GPT-4, L, Bard, Claude, LLaMA, 

Alpaca, Vicuna, Dolly
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Core concepts of conversational agents

💡 Intents

The aim or target in a given user message is intent.

For example, if the user says

“I want to order a book” or “Placing order for books”,

the user is essentially placing an order. So we can

group these into a single intent called order.

Now, whenever the bot gets a user message that is

similar to other phrases in order, the bot will classify it

as belonging into the order intent

A broader intent can be useful to trigger your

assistant to do other things:

“I like puppies.”

“We’ll leave at 4:00”

“Oh, I’m allergic to shellfish.”

“No, she hasn’t made reservation yet.”

Using intents means you treat modelling what a user

does in a conversation as a multiclass classification

problem.
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intent: inform



Core concepts of conversational agents

📌 Entities

Things that can be extracted from a user message.

For example: a telephone number, a person's name,

a location, the name of a product.

Example of entities in a user input:

▪ I would like to book a flight to Sydney.

Entity roles and groups allow you to add more details

to your entities.

Entity roles allow you to define the roles of the entities

of the same groups.

▪ I am looking for a flight from New York to Boston

Entities groups allow you to put extracted entities

under a specific group.

▪ I would like a large pepperoni with cheese and one

with mushrooms.
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entity: destination

value: Sydney

entity: destination

value: Sydney

role: origin

entity: destination

value: Boston

role: destination

entity: toppings

value: cheese

group: 2

entity: toppings

value: mushrooms

group: 1



Core concepts of conversational agents

🚩 Actions

The model predicts an action that the assistant should perform next after each user message.

An overview of different types of actions:
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Responses
Custom 
actions

Forms

Default 
actions

Slot 
validation 
actions

Most commonly used



Core concepts of conversational agents

📚 Domain

The domain file is a directory of everything your assistant knows:

▪ Responses: Things assistant can say to users

▪ Intents: Categories of things users say

▪ Slots: Variables remembered over the course of a conversation

▪ Entities: Pieces of information extracted from incoming text

▪ Forms and actions: Add application logic and extend what your agent can do

© sebis230425 Schneider Practical Course NLP-based Software Engineering 21



Core concepts of conversational agents

📝Stories

A type of structured data used to train an

assistant's dialogue management model. Stories

can be used to train models that are able to

generalize to unseen conversation paths.

Format of stories:

A story is a representation of a conversation

between a user and an agent, converted into a

specific format:

▪ user inputs are expressed as intents (and

entities when necessary)

▪ the assistant's responses and actions are

expressed as action names
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✍ Example of a dialogue in the Rasa story format

stories:

- story: collect restaurant booking info # name of the story - just 

for debugging

steps:

- intent: greet # user message with no entities

- action: utter_ask_howcanhelp

- intent: inform # user message with entities

entities:

- location: "rome"

- price: "cheap"

- action: utter_on_it # action that the bot should execute

- action: utter_ask_cuisine

- intent: inform

entities:

- cuisine: "spanish"

- action: utter_ask_num_people



Core concepts of conversational agents

📝Stories

Stories are composed of:

▪ story: The story's name. The name is arbitrary and not used in training; you 

can use it as a human-readable reference for the story.

▪ metadata: arbitrary and optional, not used in training, you can use it to store 

relevant information about the story like, e.g., the author

▪ a list of steps: The user messages and actions that make up the story

Each step can be one of the following:

▪ A user message, represented by intent and entities.

▪ An or statement, which includes two or more user messages under it.

▪ A bot action.

▪ A form.

▪ A slot was set event.

▪ A checkpoint, which connects the story to another story.
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✍ Example

stories:

- story: Greet the user

metadata:

author: Somebody

key: value

steps:

# list of steps

- intent: greet

- action: utter_greet
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Introduction to Rasa
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Rasa Open Source & Rasa Pro

Rasa Open Source

Rasa Open Source is an open source 

conversational AI platform that allows you to 

understand and hold conversations, and connect 

to messaging channels and third party systems 

through a set of APIs. It supplies the building 

blocks for creating virtual (digital) assistants or 

chatbots.

Rasa Pro

Rasa Pro is a conversational AI framework 

powered by Rasa Open Source, and includes 

additional features, APIs, and services that serve 

enterprise specific needs around security, 

observability, and scale.

With over 25 million downloads, Rasa Open Source is the most 

popular open source framework for building chat and voice-based 

AI assistants.

🔍 Exploring Rasa Open Source online using 

Rasa Playground before you install 

At the end of the tutorial, you can download the 

resulting assistant, install Rasa on your machine and 

continue development locally.

https://rasa.com/docs/rasa/playground/



Introduction to Rasa

Python environment requirement

Currently, rasa supports the following Python versions: 3.7, 3.8, 3.9 and 3.10

Installing Rasa Open Source

To install Rasa Open Source:

Ubuntu / macOS / Windows

pip3 install rasa

You can now create a new project with:

rasa init

Upgrading Versions

To upgrade your installed version of Rasa Open Source to the latest version from PyPI:

pip3 install --upgrade rasa

To download a specific version, specify the version number:

pip3 install rasa==3.0
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Installing Rasa Open Source

☑ Additional dependencies

For some machine learning algorithms, you 
need to install additional python packages.

The page on 
https://rasa.com/docs/rasa/tuning-your-
model/ will help you pick the right 
configuration for your assistant and alert you to 
additional dependencies.

https://rasa.com/docs/rasa/tuning-your-model/
https://rasa.com/docs/rasa/tuning-your-model/


Introduction to Rasa

© sebis230425 Schneider Practical Course NLP-based Software Engineering 27

Rasa architecture

▪ Two primary components are Natural 

Language Understanding (NLU) and 

dialogue management

▪ NLU is the part that handles intent 

classification, entity extraction, and 

response retrieval. It's shown below 

as the NLU Pipeline because it 

processes user utterances using an 

NLU model that is generated by the 

trained pipeline.

▪ The dialogue management 

component decides the next action in 

a conversation based on the context. 

This is displayed as the Dialogue 

Policies in the diagram.

https://rasa.com/docs/rasa/arch-overview



Creating a new agent
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Files
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▪ File structure of the project you have just created ▪ The domain.yml file is the file where 

everything comes together

▪ The config.yml file contains the configuration 

for your machine learning models

▪ The data folder contains data that your 

assistant will learn from

▪ The nlu.yml file contains examples for your 

intents and entities

▪ The stories.yml file contains examples of 

conversations turns

▪ The rules.yml file contains predefined rules 

for the dialogue policies
https://learning.rasa.com/conversational-ai-with-rasa/creating-a-new-assistant/



Commands
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▪ rasa init allows you to start a new Rasa project

▪ rasa train allows you to train a new assistant based on your current training data

▪ rasa shell allows you to chat with a trained assistant

▪ rasa -h allows you get receive relevant help text for a command

▪ rasa --debug gives you extra log output when running commands



Creating a new agent
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▪ Dialogue policies

Building a conversational agent
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Creating NLU training data

▪ Three important planning steps:

▪ Asking who your users are 

▪ Understanding the assistant’s purpose 

▪ Documenting the most typical conversations users will have with the assistant 

▪ Gathering possible questions

▪ Outlining the conversation flow
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Basics of conversational design

✍ Note

Conversation design is a challenging task. It’s difficult to anticipate the back and forth interactions in real-life 

conversations. You should only rely on hypothetical conversations in the early stages of development and 

train your assistant on real conversations as soon as possible. 



Creating NLU training data

NLU model 

▪ An NLU model is used to extract meaning from text input 

▪ We will create training data which contains labelled examples of intents and entities 

▪ Training an NLU model on this data allows the model to make predictions about the intents and entities in 

new user messages

▪ NLU models are created by a training pipeline 

▪ Rasa provides two pre-figured pipelines, defined in config.yml file

▪ Configuring a custom training pipeline is also possible

Word embeddings 

▪ Word embeddings convert words to vectors, or dense numeric representations based on multiple 

dimensions. 

▪ Similar words are represented by similar vectors, which allows the model to capture their meaning
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Key concepts



Creating NLU training data
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Defining intents and entities

Intents are defined using a double hashtag. 

Each intent is followed by multiple examples 

of how a user might express that intent.

✍ Best practices 

▪ You don’t need to write every possible 

utterance to train an intent, but you 

should provide at least 15-20 examples. 

▪ Make sure you provide high-quality data 

to train your model. Examples should be 

relevant to the intents, and be sure that 

there’s plenty of diversity in the 

vocabulary you use in your examples. 

https://rasa.com/blog/the-rasa-masterclass-handbook-episode-2/



Creating NLU training data
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Defining intents and entities

Entities are labelled with 

square brackets and tagged 

with their type in parentheses

Example: nlu.md file for a 

Medicare Locator 

https://rasa.com/blog/the-rasa-masterclass-handbook-episode-2/



Creating NLU training data

Choosing a pipeline configuration

Rasa comes with two default, pre-configured pipelines for intent classification and entity extraction:

▪ Pretrained_embeddings_spacy

▪ Advantages: 

▪ Boosts the accuracy of your models, even if you have very little training data 

▪ Faster training

▪ Considerations: 

▪ Complete and accurate word embeddings are mostly in English

▪ Word embeddings don’t cover domain-specific words

▪ Supervised_embeddings (training model from scratch)

▪ Advantages 

▪ Can adapt to domain-specific words and messages, because the model is trained on your training data. 

▪ Language-agnostic. Allows you to build assistants in any language. 

▪ Supports messages with multiple intents. 

▪ Considerations 

▪ Need more training examples(1000 or more) for your model to start understanding unfamiliar user inputs
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NLU training pipeline



Creating NLU training data

Understanding individual pipeline components

Basic sequence of training for both pipelines:

1. Load pre-trained language model (optional). Only needed if you’re using a pre-trained model like spaCy. 

2. Tokenize the data. 

Splits the training data text into individual words, or subwords. 

3. Named Entity Recognition. 

Teaches the model to recognize which words in a message are entities and what type of entity they are. 

4. Featurization

Converts tokens to vectors, or dense numeric representations of words. 

5. Intent Classification. 

Trains the model to make a prediction about the most likely meaning behind a user’s message 
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NLU training pipeline



Creating NLU training data

Training pipeline components
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NLU training pipeline

📍 SpacyNLP

The pretrained_embeddings_spacy

pipeline uses the SpacyNLP

component to load the spaCy

language model so it can be used 

by subsequent processing steps. 

You only need to include this 

component in pipelines that use 

spaCy for pre-trained embeddings, 

and it needs to be placed at the very 

beginning of the pipeline 



Creating NLU training data

Tokenizer: Splitting texts into smaller chunks

Named entity recognition: Extracting entities from user messages
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NLU training pipeline



Creating NLU training data

Intent classification: Featurizers and intent classification models work together to classify intents

▪ Featurizers: Take tokens, or individual words, and encode them as vectors 

▪ CountVectorsFeaturizer

▪ Creates a bag-of-words representation of a user’s message using sklearn’s CountVectorizer

▪ Counts how often certain words from your training data appear in a message and provides that as input 

for the intent classifier 

SpacyFeaturizer

▪ SpacyFeaturizer: For pre-trained embeddings

© sebis230425 Schneider Practical Course NLP-based Software Engineering 40

NLU training pipeline



Creating NLU training data

▪ Intent classification models 

▪ EmbeddingIntentClassifier

▪ Use EmbeddingIntentClassifier if you use CountVectorsFeaturizer

▪ The features extracted by the CountVectorsFeaturizer are transferred to the EmbeddingIntentClassifier

to produce intent predictions

▪ SklearnIntentClassifier

▪ When using pre-trained word embeddings, you should use the SklearnIntentClassifier component for 

intent classification

▪ An SVM model predicts the intent of user input based on observed text features 
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NLU training pipeline

Featurizers and their corresponding intent classifier for intent classification



Creating NLU training data

▪ Your conversational agent’s processing pipeline is defined in the config.yml file 

▪ An example of configuring the supervised_embeddings pipeline:

1. Define the language indicator and the pipeline name in config.yml file:

language: "en"

pipeline: "supervised_embeddings" 

2. Run the Rasa CLI command rasa train nlu

This command will train the model on your training data and save it in a directory called models 
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Training the model



Creating NLU training data

Test the newly trained model on the command line by running the command rasa shell nlu:

Type a message in your terminal, for example, “Hello there.” Rasa CLI outputs a JSON object containing 

several useful pieces of data: 

▪ The intent the model thinks is the most likely match for the message

▪ For example: {“name: greet”, “confidence: 0.95347273804” . This means the model is 95% certain “Hello 

there” is a greeting

▪ A list of extracted entities

▪ A list of intent_rankings

▪ Results showing the intent classification for all of the other intents defined in the training data

▪ Intents are ranked according to the intent match probability predictions generated by the model 
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Testing the model



Creating a new agent

▪ Files
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Building a conversational agent
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Dialogue management

Stories are basic training units of dialogue training data 

that detail the back and forth conversation between user 

and assistant 

Stories contain:

▪ User messages (intent labels and entities 

extracted by the NLU model)

▪ Actions: All actions executed by the bot, 

including responses are listed in stories under 

the action key

© sebis230425 Schneider Practical Course NLP-based Software Engineering 45

Stories

📌 An example of stories file:

▪ Location: your_rasa_project\data\stories.yml



You can be quite expressive in a story file:

You could, for example, use or statements. The story 
above uses an or statement to indicate that a user can use 
either the affirm or the thanks intent to confirm a signup.

You can also to use checkpoints in your stories to connect 
stories:
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Put a checkpoint at 

the end of one story

Put the same 

checkpoint at the 

start of another story 

that you want to 

connect

Dialogue management

Stories



Dialogue management

Designing Stories

Two groups of conversational interactions that need to be accounted for: happy and unhappy paths

▪ Happy paths describe when the user is following the conversation flow as you'd expect and always providing 

the necessary information when prompted

▪ unhappy path: users deviate from happy paths with questions, chit chat, or other asks

Recommendation: conversation-driven-development when designing unhappy paths

▪ Share your bot as early as possible with test users and collect real conversation data that tells you exactly 

how users diverge from the happy paths

▪ From this data, you can create stories to accomplish what the user is requesting and start to think about ways 

to guide them back into a happy path
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Stories



Dialogue management

A way to describe dialogue sequences that should 

always go the same way

Rules can be useful when implementing:

▪ One-turn interactions: 

▪ Fallback behaviour

▪ Forms

Because rules do not generalize to unseen 

conversations, you should reserve them for single-turn 

conversation snippets, and instead use stories to train on 

multi-turn conversations.
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Rules

📌 An example of rules file:

▪ whenever I see a user use the greet intent, the 

response should always be 

the utter_greet response



Dialogue management

The domain file

The domain.yml defines the environment in which the assistant operates.

It contains:

▪ Responses: the things the assistant can say to users.

▪ Intents: the different intentions users have

▪ Slots: Variables remembered over the course of a conversation.

▪ Entities: Pieces of information extracted from incoming text.

▪ Forms and actions: Add application logic & extend what your assistant can do.
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Domain, actions and slots



Dialogue management

▪ There is a utter_<thing> naming convention so 
that each response starts with "utter”

▪ Note that it is recommended to have 
a utter_iamabot in your domain file since 
because assistant should be able to explain 
that they are not a human
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Domain, actions and slots 

Example snippet from a domain.yml file

You can also define responses that are dynamic:

▪ In this case, Rasa will randomly select one of the 
two responses whenever it needs to send 
the utter_greet response. It will also fill in 
the {name} variable with a slot value if there is 
one that's available.



You are also able to define responses that contain images 
or buttons as well.

You can even customise the message based on the 
channel that you're using.

This way, slack users will be able to get a different 
message.
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Dialogue management

Domain, actions and slots 



Dialogue management

Actions

The section called actions should contain the list of all utterances and custom actions an assistant should use to 

respond to a user’s input. These should come from your stories data in the stories.md file. 

Custom actions

▪ Custom actions are response actions which include custom code

▪ Can define anything from a simple text response to a backend integration - an API call, connecting to the 

database, or anything else your assistant needs to do

▪ Custom actions are defined in a file called actions.py
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Domain, actions and slots



Dialogue management
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Domain, actions and slots

Important: the names of these actions must match the actions included in the domain file 

https://rasa.com/blog/the-rasa-masterclass-handbook-episode-6-2/



Dialogue management
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Domain, actions and slots

Slots: the agent’s long-term memory

▪ To store any information for later use

▪ Need two pieces of information:

▪ slot name (Can match the names of 

the entities)

▪ a slot type (Text, bool, categorical, 

float, list, unfeaturized)

▪ Difference to entity:

▪ You could store any information in a 

slot, even if no entity has been 

detected

▪ It is very common to fill a slot value 

with an entity value

📍 influence_conversation tag

Slots can influence a story.

If your slots are configured to influence the flow of the 

conversation, you have to include them in your training 

stories.
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Domain, actions and slots

All slots have to be listed in the domain file

https://rasa.com/blog/the-rasa-masterclass-handbook-episode-6-2/
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Policies are components that train the dialogue 

model, and they play a very important role in 

determining its behaviour 

▪ The policy configuration is defined by a list 

of policy names, along with optional 

parameters that can be configured by 

developers 

▪ Dialogue policies run in parallel 
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Dialogue policies
Default configuration generated by rasa init:

https://rasa.com/blog/the-rasa-masterclass-handbook-episode-7/
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Major Rasa training policies:

▪ Rule Policy

▪ handles conversations that match 

predefined rule patterns. It makes 

predictions based on any rules you 

have in your rules.yml file.

▪ Memorization Policy 

▪ checks if the current conversation 

matches any of the stories in your 

training data. If so, it will predict the 

next action from the matching 

stories.

▪ TED Policy 

▪ uses Transformer model to predict 

the next best action
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Dialogue policies

These policies operate in a priority based hierarchy:

https://rasa.com/blog/dialogue-policies-rasa-2/
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