
Chair of Software Engineering for Business Information Systems (sebis)

Department of Computer Science

School of Computation, Information and Technology (CIT)

Technical University of Munich (TUM)

wwwmatthes.in.tum.de

Foundations of Conversational Artificial Intelligence
Phillip Schneider 25.04.2023, Practical Course NLP-based Software Engineering

Theoretical foundations of conversational agents

▪ Background knowledge for building conversational agents

▪ Core concepts of conversational agents

▪ Introduction to Rasa

Building a conversational agent

▪ Creating a new agent

▪ Creating NLU training data

▪ Dialogue management

Outline

© sebis230425 Schneider Practical Course NLP-based Software Engineering 2

Theoretical foundations for conversational agents

Background knowledge for building conversational agents

▪ Types of conversational agents

▪ Modular pipeline architecture

Core concepts of conversational agents

▪ Intents

▪ Entities

▪ Actions

▪ Domain

▪ Stories

Introduction to Rasa

▪ Installing Rasa Open Source

▪ Rasa architecture

© sebis230425 Schneider Practical Course NLP-based Software Engineering 3

Background knowledge for building conversational agents

📌 Definition

Conversational Artificial Intelligence (Conversational AI) is a collective term

referring to technologies for building conversational agents that are able to

interact with humans through natural language.

© sebis230425 Schneider Practical Course NLP-based Software Engineering 4

Terminology

⚠Warning

The term is defined and

interpreted inconsistently in

both academia and industry.

AI

Conversational AI

Technologies

Human Agent

Background knowledge for building conversational agents

© sebis230425 Schneider Practical Course NLP-based Software Engineering 5

Types of conversational agents

Text-

Based

Voice-

Based

Conversational

Interfaces

Multi

Modal

Expert Systems,

Knowledge Bases,

Virtual Assistants, …

Types of Conversational Interfaces

▪ Conversational interfaces can be broadly

categorized into three types:

▪ Text-based interfaces

▪ Voice-based interfaces

▪ Multi modal interfaces

Integration of Conversational Interfaces

▪ Many software agent systems incorporate

conversational interfaces (conversational agents)

▪ Conversational interfaces are often embedded in

smart devices

Background knowledge for building conversational agents

Conversational
Agents

Interaction

Text-Based

Voice-Based

Knowledge
Domain

Open Domain

Closed Domain

Goals

Task-Oriented

Non-Task-
Oriented

Design
Approach

Rule-Based

Retrieval-Based

Generative-
Based

© sebis230425 Schneider Practical Course NLP-based Software Engineering 6

Types of conversational agents by Hussain et al. (2019)

▪ Broader categorization of conversational agents

based on several criteria, e.g., mode of interaction,

knowledge domain, their usage and the design

techniques

▪ Specifically with regard to goals, chatbots are

classified into two main categories:

▪ Task-oriented

▪ Designed for a particular task

▪ Set up to have short conversations, usually

within a closed domain

▪ Non-task oriented

▪ Can simulate a conversation with a person

▪ Seem to perform chitchat for entertainment

purpose in open domains

Background knowledge for building conversational agents

Modular pipeline architecture

Speech-To-Text

Natural
Language

Understanding

Dialogue
Management

Natural
Language

Generation

Text-To-Speech

© sebis230425 Schneider Practical Course NLP-based Software Engineering 7

Background knowledge for building conversational agents

Natural language understanding (NLU)

▪ Goal: to extract structured information from user messages, usually includes the user’s intent and

any entities their message contains

▪ Rasa NLU has a pipeline architecture

© sebis230425 Schneider Practical Course NLP-based Software Engineering 8

Modular pipeline architecture

https://rasa.com/blog/intents-entities-understanding-the-rasa-nlu-pipeline/

Background knowledge for building conversational agents

Natural language understanding (NLU)

© sebis230425 Schneider Practical Course NLP-based Software Engineering 9

Modular pipeline architecture

→

NLU will take in a sentence such as

"I am looking for a French restaurant in the center of town”

and return structured data like:

https://rasa.com/docs/rasa/generating-nlu-data

Background knowledge for building conversational agents

Dialogue management (DM)

Dialogue management is the function that

controls the next action the assistant takes

during a conversation.

Based on the intents and entities extracted

by Rasa NLU, as well as other context, like

the conversation history, Rasa decides

which text response should be sent back to

the user or whether to execute custom

code, like querying a database.

Rasa assistant uses policies to decide

which action to take at each step in a

conversation. There are three different

policies that the default config.yml file

© sebis230425 Schneider Practical Course NLP-based Software Engineering 10

Modular pipeline architecture

https://rasa.com/blog/dialogue-policies-rasa-2/

Modular pipeline architecture

Modular pipeline architecture

Natural Language Generation (NLG)

N
L

G

RULE-BASED

RETRIEVAL-BASED

GENERATIVE
Response production as a

language generation task

Retrieve the most similar

response from corpus by

scoring similarity

Use defined rules to answer

questions

© sebis230425 Schneider Practical Course NLP-based Software Engineering 11

Modular pipelines versus sequence-to-sequence architectures

© sebis230425 Schneider Practical Course NLP-based Software Engineering 12

Comparison of pipeline-based and sequence-to-sequence architectures

Automatic Speech

Recognition (ASR)

Text-to-Speech (TTS)

Natural Language

Understanding (NLU)

Dialogue Management

Natural Language

Generation (NLG)

Knowledge Base

Utterance Input Neural Language Model Response Output

M
o

d
u

la
r

p
ip

e
lin

e

a
rc

h
it
e

c
tu

re

S
e

q
u

e
n

c
e

-t
o
-s

e
q
u

e
n
c
e

a
rc

h
it
e

c
tu

re

Excursus: Sequence-to-sequence architectures (Transformers)

© sebis230425 Schneider Practical Course NLP-based Software Engineering 13

Figure taken from: The Illustrated Transformer (Alammar, 2018) Figure taken from: Attention Is All You Need (Vaswani et al., 2017)

Neural Language Model

http://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Excursus: Sequence-to-sequence architectures (decoder-only)

© sebis230425 Schneider Practical Course NLP-based Software Engineering 14

Figures taken from: Understanding the Open Pre-Trained Transformers (OPT) Library (Wolfe, 2022)

https://towardsdatascience.com/understanding-the-open-pre-trained-transformers-opt-library-193a29c14a15

Excursus: Alignment of large language models with human intentions:

Reinforcement Learning from Human Feedback

© sebis230425 Schneider Practical Course NLP-based Software Engineering 15Figure taken from: Aligning language models to follow instructions (OpenAI, 2022)

https://openai.com/research/instruction-following

Excursus: Usage of large language models for dialogue systems

© sebis230425 Schneider Practical Course NLP-based Software Engineering 16

⚠Warning

Auto-regressive large language models (LLMs) show

exceptional performance in text generation, but should be

used with caution in the context of dialogue systems due

to the following shortcomings:

▪ Weak representational power

▪ Factual errors and hallucinations

▪ Logical errors and lack of commonsense

▪ Inconsistency and not controllable

▪ Bias and toxicity

→ Large language models have no knowledge of the

underlying reality and do not apply human-level reasoning

✍ Recently released LLMs

▪ GPT-3.5, GPT-4, L, Bard, Claude, LLaMA,

Alpaca, Vicuna, Dolly

Background knowledge for building conversational agents

▪ Types of conversational agents

▪ Modular pipeline architecture

Core concepts of conversational agents

▪ Intents

▪ Entities

▪ Actions

▪ Domain

▪ Stories

Introduction to Rasa

▪ Installing Rasa Open Source

▪ Rasa architecture

Theoretical foundations for conversational agents

© sebis230425 Schneider Practical Course NLP-based Software Engineering 17

Core concepts of conversational agents

💡 Intents

The aim or target in a given user message is intent.

For example, if the user says

“I want to order a book” or “Placing order for books”,

the user is essentially placing an order. So we can

group these into a single intent called order.

Now, whenever the bot gets a user message that is

similar to other phrases in order, the bot will classify it

as belonging into the order intent

A broader intent can be useful to trigger your

assistant to do other things:

“I like puppies.”

“We’ll leave at 4:00”

“Oh, I’m allergic to shellfish.”

“No, she hasn’t made reservation yet.”

Using intents means you treat modelling what a user

does in a conversation as a multiclass classification

problem.

© sebis230425 Schneider Practical Course NLP-based Software Engineering 18

intent: inform

Core concepts of conversational agents

📌 Entities

Things that can be extracted from a user message.

For example: a telephone number, a person's name,

a location, the name of a product.

Example of entities in a user input:

▪ I would like to book a flight to Sydney.

Entity roles and groups allow you to add more details

to your entities.

Entity roles allow you to define the roles of the entities

of the same groups.

▪ I am looking for a flight from New York to Boston

Entities groups allow you to put extracted entities

under a specific group.

▪ I would like a large pepperoni with cheese and one

with mushrooms.

© sebis230425 Schneider Practical Course NLP-based Software Engineering 19

entity: destination

value: Sydney

entity: destination

value: Sydney

role: origin

entity: destination

value: Boston

role: destination

entity: toppings

value: cheese

group: 2

entity: toppings

value: mushrooms

group: 1

Core concepts of conversational agents

🚩 Actions

The model predicts an action that the assistant should perform next after each user message.

An overview of different types of actions:

© sebis230425 Schneider Practical Course NLP-based Software Engineering 20

Responses
Custom
actions

Forms

Default
actions

Slot
validation
actions

Most commonly used

Core concepts of conversational agents

📚 Domain

The domain file is a directory of everything your assistant knows:

▪ Responses: Things assistant can say to users

▪ Intents: Categories of things users say

▪ Slots: Variables remembered over the course of a conversation

▪ Entities: Pieces of information extracted from incoming text

▪ Forms and actions: Add application logic and extend what your agent can do

© sebis230425 Schneider Practical Course NLP-based Software Engineering 21

Core concepts of conversational agents

📝Stories

A type of structured data used to train an

assistant's dialogue management model. Stories

can be used to train models that are able to

generalize to unseen conversation paths.

Format of stories:

A story is a representation of a conversation

between a user and an agent, converted into a

specific format:

▪ user inputs are expressed as intents (and

entities when necessary)

▪ the assistant's responses and actions are

expressed as action names

© sebis230425 Schneider Practical Course NLP-based Software Engineering 22

✍ Example of a dialogue in the Rasa story format

stories:

- story: collect restaurant booking info # name of the story - just

for debugging

steps:

- intent: greet # user message with no entities

- action: utter_ask_howcanhelp

- intent: inform # user message with entities

entities:

- location: "rome"

- price: "cheap"

- action: utter_on_it # action that the bot should execute

- action: utter_ask_cuisine

- intent: inform

entities:

- cuisine: "spanish"

- action: utter_ask_num_people

Core concepts of conversational agents

📝Stories

Stories are composed of:

▪ story: The story's name. The name is arbitrary and not used in training; you

can use it as a human-readable reference for the story.

▪ metadata: arbitrary and optional, not used in training, you can use it to store

relevant information about the story like, e.g., the author

▪ a list of steps: The user messages and actions that make up the story

Each step can be one of the following:

▪ A user message, represented by intent and entities.

▪ An or statement, which includes two or more user messages under it.

▪ A bot action.

▪ A form.

▪ A slot was set event.

▪ A checkpoint, which connects the story to another story.

© sebis230425 Schneider Practical Course NLP-based Software Engineering 23

✍ Example

stories:

- story: Greet the user

metadata:

author: Somebody

key: value

steps:

list of steps

- intent: greet

- action: utter_greet

Background knowledge for building conversational agents

▪ Types of conversational agents

▪ Modular pipeline architecture

Core concepts of conversational agents

▪ Intents

▪ Entities

▪ Actions

▪ Domain

▪ Stories

Introduction to Rasa

▪ Installing Rasa Open Source

▪ Rasa architecture

Theoretical knowledge for conversational agents

© sebis230425 Schneider Practical Course NLP-based Software Engineering 24

Introduction to Rasa

© sebis230425 Schneider Practical Course NLP-based Software Engineering 25

Rasa Open Source & Rasa Pro

Rasa Open Source

Rasa Open Source is an open source

conversational AI platform that allows you to

understand and hold conversations, and connect

to messaging channels and third party systems

through a set of APIs. It supplies the building

blocks for creating virtual (digital) assistants or

chatbots.

Rasa Pro

Rasa Pro is a conversational AI framework

powered by Rasa Open Source, and includes

additional features, APIs, and services that serve

enterprise specific needs around security,

observability, and scale.

With over 25 million downloads, Rasa Open Source is the most

popular open source framework for building chat and voice-based

AI assistants.

🔍 Exploring Rasa Open Source online using

Rasa Playground before you install

At the end of the tutorial, you can download the

resulting assistant, install Rasa on your machine and

continue development locally.

https://rasa.com/docs/rasa/playground/

Introduction to Rasa

Python environment requirement

Currently, rasa supports the following Python versions: 3.7, 3.8, 3.9 and 3.10

Installing Rasa Open Source

To install Rasa Open Source:

Ubuntu / macOS / Windows

pip3 install rasa

You can now create a new project with:

rasa init

Upgrading Versions

To upgrade your installed version of Rasa Open Source to the latest version from PyPI:

pip3 install --upgrade rasa

To download a specific version, specify the version number:

pip3 install rasa==3.0

© sebis230425 Schneider Practical Course NLP-based Software Engineering 26

Installing Rasa Open Source

☑ Additional dependencies

For some machine learning algorithms, you
need to install additional python packages.

The page on
https://rasa.com/docs/rasa/tuning-your-
model/ will help you pick the right
configuration for your assistant and alert you to
additional dependencies.

https://rasa.com/docs/rasa/tuning-your-model/
https://rasa.com/docs/rasa/tuning-your-model/

Introduction to Rasa

© sebis230425 Schneider Practical Course NLP-based Software Engineering 27

Rasa architecture

▪ Two primary components are Natural

Language Understanding (NLU) and

dialogue management

▪ NLU is the part that handles intent

classification, entity extraction, and

response retrieval. It's shown below

as the NLU Pipeline because it

processes user utterances using an

NLU model that is generated by the

trained pipeline.

▪ The dialogue management

component decides the next action in

a conversation based on the context.

This is displayed as the Dialogue

Policies in the diagram.

https://rasa.com/docs/rasa/arch-overview

Creating a new agent

▪ Files

▪ Commands

Creating NLU training data

▪ Basics of conversational design

▪ Defining intents and entities

▪ NLU training pipeline

Dialogue management

▪ Stories

▪ Rules

▪ Domain, custom actions, and slots

▪ Dialogue policies

Building a conversational agent

© sebis230425 Schneider Practical Course NLP-based Software Engineering 28

Files

© sebis230425 Schneider Practical Course NLP-based Software Engineering 29

▪ File structure of the project you have just created ▪ The domain.yml file is the file where

everything comes together

▪ The config.yml file contains the configuration

for your machine learning models

▪ The data folder contains data that your

assistant will learn from

▪ The nlu.yml file contains examples for your

intents and entities

▪ The stories.yml file contains examples of

conversations turns

▪ The rules.yml file contains predefined rules

for the dialogue policies
https://learning.rasa.com/conversational-ai-with-rasa/creating-a-new-assistant/

Commands

© sebis230425 Schneider Practical Course NLP-based Software Engineering 30

▪ rasa init allows you to start a new Rasa project

▪ rasa train allows you to train a new assistant based on your current training data

▪ rasa shell allows you to chat with a trained assistant

▪ rasa -h allows you get receive relevant help text for a command

▪ rasa --debug gives you extra log output when running commands

Creating a new agent

▪ Files

▪ Commands

Creating NLU training data

▪ Basics of conversational design

▪ Defining intents and entities

▪ NLU training pipeline

Dialogue management

▪ Stories

▪ Rules

▪ Domain, custom actions and slots

▪ Dialogue policies

Building a conversational agent

© sebis230425 Schneider Practical Course NLP-based Software Engineering 31

Creating NLU training data

▪ Three important planning steps:

▪ Asking who your users are

▪ Understanding the assistant’s purpose

▪ Documenting the most typical conversations users will have with the assistant

▪ Gathering possible questions

▪ Outlining the conversation flow

© sebis230425 Schneider Practical Course NLP-based Software Engineering 32

Basics of conversational design

✍ Note

Conversation design is a challenging task. It’s difficult to anticipate the back and forth interactions in real-life

conversations. You should only rely on hypothetical conversations in the early stages of development and

train your assistant on real conversations as soon as possible.

Creating NLU training data

NLU model

▪ An NLU model is used to extract meaning from text input

▪ We will create training data which contains labelled examples of intents and entities

▪ Training an NLU model on this data allows the model to make predictions about the intents and entities in

new user messages

▪ NLU models are created by a training pipeline

▪ Rasa provides two pre-figured pipelines, defined in config.yml file

▪ Configuring a custom training pipeline is also possible

Word embeddings

▪ Word embeddings convert words to vectors, or dense numeric representations based on multiple

dimensions.

▪ Similar words are represented by similar vectors, which allows the model to capture their meaning

© sebis230425 Schneider Practical Course NLP-based Software Engineering 33

Key concepts

Creating NLU training data

© sebis230425 Schneider Practical Course NLP-based Software Engineering 34

Defining intents and entities

Intents are defined using a double hashtag.

Each intent is followed by multiple examples

of how a user might express that intent.

✍ Best practices

▪ You don’t need to write every possible

utterance to train an intent, but you

should provide at least 15-20 examples.

▪ Make sure you provide high-quality data

to train your model. Examples should be

relevant to the intents, and be sure that

there’s plenty of diversity in the

vocabulary you use in your examples.

https://rasa.com/blog/the-rasa-masterclass-handbook-episode-2/

Creating NLU training data

© sebis230425 Schneider Practical Course NLP-based Software Engineering 35

Defining intents and entities

Entities are labelled with

square brackets and tagged

with their type in parentheses

Example: nlu.md file for a

Medicare Locator

https://rasa.com/blog/the-rasa-masterclass-handbook-episode-2/

Creating NLU training data

Choosing a pipeline configuration

Rasa comes with two default, pre-configured pipelines for intent classification and entity extraction:

▪ Pretrained_embeddings_spacy

▪ Advantages:

▪ Boosts the accuracy of your models, even if you have very little training data

▪ Faster training

▪ Considerations:

▪ Complete and accurate word embeddings are mostly in English

▪ Word embeddings don’t cover domain-specific words

▪ Supervised_embeddings (training model from scratch)

▪ Advantages

▪ Can adapt to domain-specific words and messages, because the model is trained on your training data.

▪ Language-agnostic. Allows you to build assistants in any language.

▪ Supports messages with multiple intents.

▪ Considerations

▪ Need more training examples(1000 or more) for your model to start understanding unfamiliar user inputs

© sebis230425 Schneider Practical Course NLP-based Software Engineering 36

NLU training pipeline

Creating NLU training data

Understanding individual pipeline components

Basic sequence of training for both pipelines:

1. Load pre-trained language model (optional). Only needed if you’re using a pre-trained model like spaCy.

2. Tokenize the data.

Splits the training data text into individual words, or subwords.

3. Named Entity Recognition.

Teaches the model to recognize which words in a message are entities and what type of entity they are.

4. Featurization

Converts tokens to vectors, or dense numeric representations of words.

5. Intent Classification.

Trains the model to make a prediction about the most likely meaning behind a user’s message

© sebis230425 Schneider Practical Course NLP-based Software Engineering 37

NLU training pipeline

Creating NLU training data

Training pipeline components

© sebis230425 Schneider Practical Course NLP-based Software Engineering 38

NLU training pipeline

📍 SpacyNLP

The pretrained_embeddings_spacy

pipeline uses the SpacyNLP

component to load the spaCy

language model so it can be used

by subsequent processing steps.

You only need to include this

component in pipelines that use

spaCy for pre-trained embeddings,

and it needs to be placed at the very

beginning of the pipeline

Creating NLU training data

Tokenizer: Splitting texts into smaller chunks

Named entity recognition: Extracting entities from user messages

© sebis230425 Schneider Practical Course NLP-based Software Engineering 39

NLU training pipeline

Creating NLU training data

Intent classification: Featurizers and intent classification models work together to classify intents

▪ Featurizers: Take tokens, or individual words, and encode them as vectors

▪ CountVectorsFeaturizer

▪ Creates a bag-of-words representation of a user’s message using sklearn’s CountVectorizer

▪ Counts how often certain words from your training data appear in a message and provides that as input

for the intent classifier

SpacyFeaturizer

▪ SpacyFeaturizer: For pre-trained embeddings

© sebis230425 Schneider Practical Course NLP-based Software Engineering 40

NLU training pipeline

Creating NLU training data

▪ Intent classification models

▪ EmbeddingIntentClassifier

▪ Use EmbeddingIntentClassifier if you use CountVectorsFeaturizer

▪ The features extracted by the CountVectorsFeaturizer are transferred to the EmbeddingIntentClassifier

to produce intent predictions

▪ SklearnIntentClassifier

▪ When using pre-trained word embeddings, you should use the SklearnIntentClassifier component for

intent classification

▪ An SVM model predicts the intent of user input based on observed text features

© sebis230425 Schneider Practical Course NLP-based Software Engineering 41

NLU training pipeline

Featurizers and their corresponding intent classifier for intent classification

Creating NLU training data

▪ Your conversational agent’s processing pipeline is defined in the config.yml file

▪ An example of configuring the supervised_embeddings pipeline:

1. Define the language indicator and the pipeline name in config.yml file:

language: "en"

pipeline: "supervised_embeddings"

2. Run the Rasa CLI command rasa train nlu

This command will train the model on your training data and save it in a directory called models

© sebis230425 Schneider Practical Course NLP-based Software Engineering 42

Training the model

Creating NLU training data

Test the newly trained model on the command line by running the command rasa shell nlu:

Type a message in your terminal, for example, “Hello there.” Rasa CLI outputs a JSON object containing

several useful pieces of data:

▪ The intent the model thinks is the most likely match for the message

▪ For example: {“name: greet”, “confidence: 0.95347273804” . This means the model is 95% certain “Hello

there” is a greeting

▪ A list of extracted entities

▪ A list of intent_rankings

▪ Results showing the intent classification for all of the other intents defined in the training data

▪ Intents are ranked according to the intent match probability predictions generated by the model

© sebis230425 Schneider Practical Course NLP-based Software Engineering 43

Testing the model

Creating a new agent

▪ Files

▪ Commands

Creating NLU training data

▪ Basics of conversational design

▪ Defining intents and entities

▪ NLU training pipeline

Dialogue management

▪ Stories

▪ Rules

▪ Domain, custom actions and slots

▪ Dialogue policies

Building a conversational agent

© sebis230425 Schneider Practical Course NLP-based Software Engineering 44

Dialogue management

Stories are basic training units of dialogue training data

that detail the back and forth conversation between user

and assistant

Stories contain:

▪ User messages (intent labels and entities

extracted by the NLU model)

▪ Actions: All actions executed by the bot,

including responses are listed in stories under

the action key

© sebis230425 Schneider Practical Course NLP-based Software Engineering 45

Stories

📌 An example of stories file:

▪ Location: your_rasa_project\data\stories.yml

You can be quite expressive in a story file:

You could, for example, use or statements. The story
above uses an or statement to indicate that a user can use
either the affirm or the thanks intent to confirm a signup.

You can also to use checkpoints in your stories to connect
stories:

© sebis230425 Schneider Practical Course NLP-based Software Engineering 46

Put a checkpoint at

the end of one story

Put the same

checkpoint at the

start of another story

that you want to

connect

Dialogue management

Stories

Dialogue management

Designing Stories

Two groups of conversational interactions that need to be accounted for: happy and unhappy paths

▪ Happy paths describe when the user is following the conversation flow as you'd expect and always providing

the necessary information when prompted

▪ unhappy path: users deviate from happy paths with questions, chit chat, or other asks

Recommendation: conversation-driven-development when designing unhappy paths

▪ Share your bot as early as possible with test users and collect real conversation data that tells you exactly

how users diverge from the happy paths

▪ From this data, you can create stories to accomplish what the user is requesting and start to think about ways

to guide them back into a happy path

© sebis230425 Schneider Practical Course NLP-based Software Engineering 47

Stories

Dialogue management

A way to describe dialogue sequences that should

always go the same way

Rules can be useful when implementing:

▪ One-turn interactions:

▪ Fallback behaviour

▪ Forms

Because rules do not generalize to unseen

conversations, you should reserve them for single-turn

conversation snippets, and instead use stories to train on

multi-turn conversations.

© sebis230425 Schneider Practical Course NLP-based Software Engineering 48

Rules

📌 An example of rules file:

▪ whenever I see a user use the greet intent, the

response should always be

the utter_greet response

Dialogue management

The domain file

The domain.yml defines the environment in which the assistant operates.

It contains:

▪ Responses: the things the assistant can say to users.

▪ Intents: the different intentions users have

▪ Slots: Variables remembered over the course of a conversation.

▪ Entities: Pieces of information extracted from incoming text.

▪ Forms and actions: Add application logic & extend what your assistant can do.

© sebis230425 Schneider Practical Course NLP-based Software Engineering 49

Domain, actions and slots

Dialogue management

▪ There is a utter_<thing> naming convention so
that each response starts with "utter”

▪ Note that it is recommended to have
a utter_iamabot in your domain file since
because assistant should be able to explain
that they are not a human

© sebis230425 Schneider Practical Course NLP-based Software Engineering 50

Domain, actions and slots

Example snippet from a domain.yml file

You can also define responses that are dynamic:

▪ In this case, Rasa will randomly select one of the
two responses whenever it needs to send
the utter_greet response. It will also fill in
the {name} variable with a slot value if there is
one that's available.

You are also able to define responses that contain images
or buttons as well.

You can even customise the message based on the
channel that you're using.

This way, slack users will be able to get a different
message.

© sebis230425 Schneider Practical Course NLP-based Software Engineering 51

Dialogue management

Domain, actions and slots

Dialogue management

Actions

The section called actions should contain the list of all utterances and custom actions an assistant should use to

respond to a user’s input. These should come from your stories data in the stories.md file.

Custom actions

▪ Custom actions are response actions which include custom code

▪ Can define anything from a simple text response to a backend integration - an API call, connecting to the

database, or anything else your assistant needs to do

▪ Custom actions are defined in a file called actions.py

© sebis230425 Schneider Practical Course NLP-based Software Engineering 52

Domain, actions and slots

Dialogue management

© sebis230425 Schneider Practical Course NLP-based Software Engineering 53

Domain, actions and slots

Important: the names of these actions must match the actions included in the domain file

https://rasa.com/blog/the-rasa-masterclass-handbook-episode-6-2/

Dialogue management

© sebis230425 Schneider Practical Course NLP-based Software Engineering 54

Domain, actions and slots

Slots: the agent’s long-term memory

▪ To store any information for later use

▪ Need two pieces of information:

▪ slot name (Can match the names of

the entities)

▪ a slot type (Text, bool, categorical,

float, list, unfeaturized)

▪ Difference to entity:

▪ You could store any information in a

slot, even if no entity has been

detected

▪ It is very common to fill a slot value

with an entity value

📍 influence_conversation tag

Slots can influence a story.

If your slots are configured to influence the flow of the

conversation, you have to include them in your training

stories.

Dialogue management

© sebis230425 Schneider Practical Course NLP-based Software Engineering 55

Domain, actions and slots

All slots have to be listed in the domain file

https://rasa.com/blog/the-rasa-masterclass-handbook-episode-6-2/

Dialogue management

Policies are components that train the dialogue

model, and they play a very important role in

determining its behaviour

▪ The policy configuration is defined by a list

of policy names, along with optional

parameters that can be configured by

developers

▪ Dialogue policies run in parallel

© sebis230425 Schneider Practical Course NLP-based Software Engineering 56

Dialogue policies
Default configuration generated by rasa init:

https://rasa.com/blog/the-rasa-masterclass-handbook-episode-7/

Dialogue management

Major Rasa training policies:

▪ Rule Policy

▪ handles conversations that match

predefined rule patterns. It makes

predictions based on any rules you

have in your rules.yml file.

▪ Memorization Policy

▪ checks if the current conversation

matches any of the stories in your

training data. If so, it will predict the

next action from the matching

stories.

▪ TED Policy

▪ uses Transformer model to predict

the next best action

© sebis230425 Schneider Practical Course NLP-based Software Engineering 57

Dialogue policies

These policies operate in a priority based hierarchy:

https://rasa.com/blog/dialogue-policies-rasa-2/

References

▪ Freed, A. (2021). Conversational AI: Chatbots that Work. Manning Publications.

▪ Harms, J. G., Kucherbaev, P., Bozzon, A., & Houben, G. J. (2018). Approaches for dialog management in conversational
agents. IEEE Internet Computing, 23(2), 13-22.

▪ Hussain, S., Ameri Sianaki, O., & Ababneh, N. (2019). A survey on conversational agents/chatbots classification and
design techniques. In Web, Artificial Intelligence and Network Applications: Proceedings of the Workshops of the 33rd
International Conference on Advanced Information Networking and Applications (WAINA-2019) 33 (pp. 946-956). Springer
International Publishing.

▪ McTear, M. (2020). Conversational AI: dialogue systems, conversational agents, and chatbots. Synthesis Lectures on
Human Language Technologies, 13(3), 1-251.

▪ Ram, A., Prasad, R., Khatri, C., Venkatesh, A., Gabriel, R., Liu, Q., ... & Pettigrue, A. (2018). Conversational AI: The
science behind the alexa prize. 1st Proceedings of Alexa Prize (Alexa Prize 2017).

▪ Getting started with Rasa, accessed January 2023. https://rasa.com/docs/

▪ NLU traing data format, accessed January 2023. https://rasa.com/docs/rasa/nlu-training-data/

▪ Choosing a pipeline, accessed January 2023. https://rasa.com/docs/rasa/tuning-your-model/

▪ NLU components, accessed January 2023. https://rasa.com/docs/rasa/components/#ducklinghttpextractor

▪ Supervised Word Vectors from Scratch in Rasa NLU, accessed January 2023. https://medium.com/rasa-blog/supervised-
word-vectors-from-scratch-in-rasa-nlu-6daf794efcd8

▪ SpaCy 101, accessed January 2023. https://spacy.io/usage/spacy-101

▪ Rasa: Open Source Language Understanding and Dialogue Management, accessed January 2023.
https://arxiv.org/abs/1712.05181

▪ Dialogue policies, accessed January 2023. https://rasa.com/docs/rasa/policies/

© sebis230425 Schneider Practical Course NLP-based Software Engineering 58

Acknowledgments: The slides for this lecture were created by Phillip Schneider and Yuting Zhao.

https://rasa.com/docs/rasa/tuning-your-model/

Technical University of Munich (TUM)

TUM School of CIT

Department of Computer Science (CS)

Chair of Software Engineering for Business

Information Systems (sebis)

Boltzmannstraße 3

85748 Garching bei München

+49.89.289.

wwwmatthes.in.tum.de

Phillip Schneider

17131

phillip.schneider@tum.de

http://wwwmatthes.in.tum.de/

	Folie 1: Foundations of Conversational Artificial Intelligence
	Folie 2: Outline
	Folie 3: Theoretical foundations for conversational agents
	Folie 4: Background knowledge for building conversational agents
	Folie 5: Background knowledge for building conversational agents
	Folie 6: Background knowledge for building conversational agents
	Folie 7: Background knowledge for building conversational agents
	Folie 8: Background knowledge for building conversational agents
	Folie 9: Background knowledge for building conversational agents
	Folie 10: Background knowledge for building conversational agents
	Folie 11: Modular pipeline architecture
	Folie 12: Modular pipelines versus sequence-to-sequence architectures
	Folie 13: Excursus: Sequence-to-sequence architectures (Transformers)
	Folie 14: Excursus: Sequence-to-sequence architectures (decoder-only)
	Folie 15: Excursus: Alignment of large language models with human intentions: Reinforcement Learning from Human Feedback
	Folie 16: Excursus: Usage of large language models for dialogue systems
	Folie 17: Theoretical foundations for conversational agents
	Folie 18: Core concepts of conversational agents
	Folie 19: Core concepts of conversational agents
	Folie 20: Core concepts of conversational agents
	Folie 21: Core concepts of conversational agents
	Folie 22: Core concepts of conversational agents
	Folie 23: Core concepts of conversational agents
	Folie 24: Theoretical knowledge for conversational agents
	Folie 25: Introduction to Rasa
	Folie 26: Introduction to Rasa
	Folie 27: Introduction to Rasa
	Folie 28: Building a conversational agent
	Folie 29: Files
	Folie 30: Commands
	Folie 31: Building a conversational agent
	Folie 32: Creating NLU training data
	Folie 33: Creating NLU training data
	Folie 34: Creating NLU training data
	Folie 35: Creating NLU training data
	Folie 36: Creating NLU training data
	Folie 37: Creating NLU training data
	Folie 38: Creating NLU training data
	Folie 39: Creating NLU training data
	Folie 40: Creating NLU training data
	Folie 41: Creating NLU training data
	Folie 42: Creating NLU training data
	Folie 43: Creating NLU training data
	Folie 44: Building a conversational agent
	Folie 45: Dialogue management
	Folie 46: Dialogue management
	Folie 47: Dialogue management
	Folie 48: Dialogue management
	Folie 49: Dialogue management
	Folie 50: Dialogue management
	Folie 51: Dialogue management
	Folie 52: Dialogue management
	Folie 53: Dialogue management
	Folie 54: Dialogue management
	Folie 55: Dialogue management
	Folie 56: Dialogue management
	Folie 57: Dialogue management
	Folie 58: References
	Folie 59

